Calculate the bond order of ${{\rm{N}}_2},{{\rm{O}}_2}{\rm{,O}}_2^ + $ and ${\rm{O}}_2^ - $

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In $\mathrm{N}_{2} \mathrm{Z}=7$, so total electron $=14$

Electron configuration of in $MO$ for $\mathrm{N}_{2}:(\sigma 1 s)^{2}\left(\sigma^{*} 1 s\right)^{2}(\sigma 2 s)^{2}\left(\sigma^{*} 2 s\right)^{2}\left(\pi 2 p_{x}\right)^{2}\left(\pi 2 p_{y}\right)^{2}\left(\sigma 2 p_{z}\right)^{2}$ $\mathrm{BO}=\frac{1}{2}\left(\mathrm{~N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}\right)=\frac{1}{2}(10-4)=3$ (Triple bond)

Calculate the bond order of $\mathrm{O}_{2}$

In $\mathrm{O}_{2}, \mathrm{Z}=8 \mathrm{So}$, Total electron $=16$

Electron configuration in $MO$ for $\mathrm{O}_{2}:(\sigma 1 s)^{2}\left(\sigma^{*} 1 s\right)^{2}(\sigma 2 s)^{2}\left(\sigma^{*} 2 s\right)^{2}\left(\sigma 2 p_{z}\right)^{2}\left(\pi 2 p_{x}\right)^{2}\left(\pi 2 p_{y}\right)^{2}$

$\left(\pi^{*} 2 p_{x}\right)^{1}$ $\left(\pi^{*} 2 p_{y}\right)^{1}$

$\mathrm{BO}=\frac{1}{2}\left(\mathrm{~N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}\right)=\frac{1}{2}(10-6)=($ Double bond $)$

Total electron in $\mathrm{O}_{2}=16$ and total electron in

$\mathrm{O}_{2}^{+}=15$

Electron configuration in $MO$ for $\mathrm{O}_{2}:\left(\sigma_{1 s}\right)^{2}\left(\sigma_{1 s}^{*}\right)^{2}\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{2}\left(\sigma_{2 p_{z}}\right)^{2}\left(\pi_{2 p_{x}}\right)^{2}\left(\pi_{2 p_{y}}\right)^{2}\left(\pi_{2 p_{x}}^{*}\right)^{1}$

$\left(\pi_{2 p_{y}}^{*}\right)^{0}$ BO $=\frac{1}{2}\left(N_{b}-N_{a}\right)=\frac{1}{2}(10-5)=2.5$

Calculate the bond order of $\mathrm{O}_{2}^{-}$

Total electron in $\mathrm{O}_{2}^{-}=16+1=17$

Electron configuration in $MO$ for $\mathrm{O}_{2}^{-}:\left(\sigma_{1 s}\right)^{2}\left(\sigma_{1 s}^{*}\right)^{2}\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{2}\left(\sigma_{2 p_{z}}\right)^{2}\left(\pi_{2 p_{x}}\right)^{2}\left(\pi_{2 p_{y}}\right)^{2}\left(\pi_{2 p_{x}}^{*}\right)^{2}$

$\left(\pi_{2 p_{y}}^{*}\right)^{1}$

$\begin{aligned} \mathrm{BO} =\frac{1}{2}\left(\mathrm{~N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}\right) \\ =\frac{1}{2}(10-7)=\frac{3}{2}=1.5 \end{aligned}$

Similar Questions

Match List $I$ with List $II$ :

List $I$ (Molecule  Species)

List $I$ ( Property  Shape )

$A$ $\mathrm{SO}_2 \mathrm{Cl}_2$ $I$ Paramagnetic
$B$ $NO$ $II$ Diamagnetic
$C$ $\mathrm{NO}_2^{-}$ $III$ Tetrahedral
$D$  $\mathrm{I}_3^{-}$ $IV$ Linear

Choose the correct answer from the options given below :

  • [JEE MAIN 2024]

In the conversion of $N_2$ into $N_2^+$ the electron will be lost from which of the following molecular orbital ?

Which of the following species would be expected paramagnetic

Which of the following $M.O$ has two nodal Plane's

Give features of Molecular orbital $( \mathrm{MO} )$ theory: